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SYNOPSIS  

This paper examines the response of pipelines in a homogeneous 
medium and in two different media separated by a vertical boundary; 
fault crossing is not considered. It summarizes the research conducted 
at The University of Western Ontario. The study conducted is theo-
retical and formulated in terms of both deterministic and random 
vibrations. The focus is on dynamic soil-pipe interaction. Excitation 
by seismic waves travelling along the pipe under different angles of 
incidence is considered as well as random response to seismic loading 
which is not fully correlated. 

RESUME  

Cette communication examine la reponse des oleoducs dans un sol 
homoeine et dans deux differents sols divisis par un plan vertical; 
La traverse de faille n'est pas considerie. On resume la recherche 
conduite a l'Universite de Western Ontario sur l'interaction dynamique 
sol/tuyau. De plus amples details sur certains aspects de cette 
recherche peuvent etre trouves dans les sources de references citees. 
L'itude conduite est theorique et formulae en terme de vibration 
determinante et aleatoire. L'excitation par onde sismique parcourant 
le tuyau selon differents angles d'incidence est consideree de mi'me 
que la reponse aleatoire aux charges sismiques qui n'entrent pas 
complitement en correlation. 

177 



178 

M. Novak obtained his Dh.D. from the Institute of Theoretical and 
Applied Mechanics, Prague and is currently a Professor at The 
University of Western Ontario, London, Canada. A. Hindy is a Ph.D. 
student at The University of Western Ontario under M. Novak's 
supervision. 

INTRODUCTION 

Buried pipelines are used to transport various substances such as 
oil, water or gas over great distances. In cities, they represent a 
vital part of the lifeline system whose failure can greatly contribute 
to the total damage and suffering resulting from an earthquake. 

The study of the behaviour of buried pipelines in a seismic en-
vironment can be divided into three groups depending on the type of 
medium that surrounds the pipe: response of pipes in homogeneous 
medium, response in medium with horizontally varying properties and 
response of pipelines crossing a fault. The study of all these situa-
tions started relatively recently but the body of information on pipe 
behaviour as well as practical guidelines for design have been 
increasing (4,10,11,14,19,20,21,22,23,24). 

This paper examines the response of pipelines in a homogeneous 
medium and in two different media separated by a vertical boundary; 
fault crossing is not considered. It summarizes the research conducted 
at The University of Western Ontario. More details on some aspects of 
this research can be found in Refs. (7,9,16,17). The study conducted 
is theoretical and formulated in terms of both deterministic and ran-
dom vibrations. The focus is on dynamic soil-pipe interaction. Exci-
tation by seismic waves travelling along the pipe under different 
angles of incidence is considered as well as random response to seismic 
loading which is not fully correlated. 

SOIL REACTIONS AND PIPE STIFFNESS 

The predicted response of a pipeline to seismic motion of the 
ground depends greatly on the definition of the relationship between 
the motion of the pipe and the soil reactions to this motion. In many 
of the studies, these reactions were derived from static considerations 
and damping was only estimated. However, buried pipes are fully em-
bedded bodies and consequently the damping (imaginary) part of the 
total soil reaction is large and just as important as its stiffness 
(real) part. Gross errors in the estimation of pipe damping can lead 
to completely unrealistic predictions of the response. The difficulty, 
however, is that no completely satisfactory description of the soil 
reactions is available except for the plane strain case with deep 
embedment. Therefore, this case is discussed first. 
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Plane Strain Case With Deep Embedment  

Assume linear viscoelasticity with material damping of the fre-
quency independent type (hysteretic damping) and a rigid infinitely 
long pipe undergoing harmonic uniform vibration. Then, the soil reac-
tions to this motion can be described by means of complex dynamic 
stiffness per unit length of the pipe, 
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in which au  = Rw/Vs, where R = pipe outer radius, w = frequency, Vs  = 
Alp = shear wave velocity of soil, G = shear modulus of soil and 
p = mass density of soil; finally, v = Poisson's ratio and 6 = the 
loss angle (soil material damping). The latter is also defined as 
tan6 = G2/G1 where G1 and G2 are the real and imaginary parts of the 
complex shear modulus, respectively. For embedment d + ..., the 
dimensionless parameters Su  follow from mathematically accurate expres-
sions given for both lateral and axial motions in Ref. 18. The real 
part of Eq. 1 represents soil stiffness; the imaginary (out-of-phase) 
part describes the damping. The damping part stems primarily from 
energy radiation (i.e. geometric damping). 

Eq. 1 offers basic information about the soil reactions associated 
with rigid body motions. For cases involving pipe bending, axial de-
formations and finite embedment depths, a more comprehensive descrip-
tion of soil reactions is needed. Such a description should include 
stiffness and damping constants relating any two stations along the 
pipeline. Because no such data are readily available, the soil reac-
tions are described approximately by combining the static solution due 
to Mindlin (13) with the dynamic plane strain solution (18). The pro-
cedure is described in more detail in (7). 

For a lumped mass system shown in Fig. 1, the soil stiffness and 
soil damping matrices, [K

s
] and [C

s
], are obtained in the form 

[Ks] = GS
ul
(v4-0

0
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[Cs] = GT
ia
(v,i1)32, vi/L [B] 

where for the case of ten masses, the dimensionless matrix [B] 
common to both soil stiffness and soil damping is 
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1.0 -0.1753 -0.0556 -0.0327 -0.0223 -0.0163 -0.0124 -0.0099 -0.0082 -0.006 

1.0 -0.1753 -0.0556 -0.0327 

1.0 -0.1753 -0.0556 etc. 

[B]= 1.0 -0.1753 

symmetric 1.0  

(A much higher number of masses, up to about thirty was actually used 
in the analysis). 

The analogous matrices describing the stiffness of the pipe, [K], 
are derived in terms of mechanics. To circumvent the need to consider 
pipe rotations explicitly, the pipe bending stiffness is defined as 
indicated in Fig. lb).With the soil reactions and the pipe stiffness 
matrices available, a number of different situations can be examined. 

PIPE RESPONSE TO TRAVELLING WAVES 

The soil resistance to pipe motion is generated by the relative 
motion between the pipe and the soil, ui, (Fig. la) while the pipe 
resistance derives from the absolute displacement, Ui. For a lumped 
mass system, the equations of motion are 

m j{0} + [C5 ]{0} + [K]fUl = [C5 ]{69} + [Ks ]{ug} (3) 

in which m j = the diagonal mass matrix, [C5 ] = the soil damping 
matrix, [K] = pipe stiffness matrix and [K5] = the soil stiffness 
matrix; {U} = the vector of absolute displacements of the pipe and the 
ground displacement vector is 

fug} = [u19  (4
29

uNg]
T

(4) 

The dots indicate differentiation with respect to time. 

Eq. 3 is formally the same for both lateral and axial vibrations; 
the difference is only in the stiffness and damping matrices and the 
components of ground motion. 

The response is solved from Eq. 3 considering the seismic motion 
travelling along the pipe at different angles of incidence. It is 
assumed that the ground motion has the same time history in all types 
of waves and that it does not change along the pipe. (Attenuation of 
the motion was considered only in a few cases.) P- and S-waves are 
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considered and in each case the soil particle motion is resolved into 
two components: one in the axial direction and the other in the 
lateral direction. The former component causes axial stresses, the 
latter results in bending stresses. 

A few methods including modal analysis were employed to obtain 
the solution. The best results were achieved using the Wilson-0 method 
(25) with 0 = 1.4. 

The convergence of the numerical results appeared satisfactory for 
the number of lumped masses greater than 25. Therefore, this number 
was used in most cases. 

The results are presented for a steel pipeline 137.16 cm in dia-
meter and 548.6 m in length. The wall thickness is 1.11 cm. Free 
ends are assumed and embedment is taken as 15 diameters or variable. 
(The results are not too sensitive to the embedment depth.) 

In most of the study, the time history of the ground motion is 
taken as equal to that measured during the San Fernando Valley Earth-
quake, 1971, at station 122, component S70E; rms ground acceleration = 
0.361 m/s2 , peak acceleration = 2.657 m/s2  and peak velocity = 
0.3084 m/sec. The effect of other types of motion is considered in a 
few cases. 

With these data, pipe displacements and stresses are established 
solving Eq. 3. An example of the stresses calculated is shown in 
Fig. 2 together with the time histories of the ground velocity 
and acceleration. When no soil-pipe interaction occurs, the 
pipe exactly follows the motion of the ground; in such a case the pipe 
axial stresses should be proportional to ground velocity and the 
bending stresses should be proportional to ground acceleration. 

The degree of this agreement depends on the sti ffness of the 
soil and the type of excitation. This is shown in Figs. 3 and 4 in 
which the peak (maximum) stresses are plotted for different types of 
waves and different angles of attack. For comparison, the pipe 
stresses calculated ignoring soil-pipe interaction are also plotted. 

A number of observations can be drawn from Figs. 3 and 4: 

For a P-wave, the maximum axial strain occurs at 0 = 90°, i.e. 
when the P-wave follows the direction of the pipe. The maximum 
bending strain occurs when 0 = 50°-60°. Soil-pipe interaction reduces 
the stresses. This reduction is greater for axial stress than for 
bending stress and increases with decreasing soil stiffness. 

For an S-wave, maximum bending strain occurs at 0 = 90° while 
maximum axial strain occurs at e = 40 - 45°. With stiff soils, the 
interaction effect is small in all cases. 

With the mathematical model described, an extensive parametric 
study was conducted. The effects of soil stiffness, pipe stiffness, 
pipe length, embedment depth and other factors are described in (7,8). 
The model is also suitable for linked pipes. 
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The lumped mass model can also be used to study the seismic res-
ponse of pipes crossing a vertical boundary between two soil media 
having different stiffnesses. The solution has to incorporate the 
waves reflected from the boundary. Examples of the envelopes of the 
peak stresses are shown in Figs. 5 and 6. The maximum stresses are 
plotted for a number of ratios of the shear wave velocities in the two 
media, Vs2/Vs1. The maximum stresses occur in the vicinity of the 
boundary and can exceed the values predicted ignoring soil-pipe inter-
action. 

RESPONSE OF PIPELINES TO RANDOM GROUND MOTION 

In the above approach, the ground motion was assumed to be tran-
sient but fully correlated. In this section, the pipe stresses are 
analyzed under the assumption that the ground motion is only partially 
correlated. The aim of this analysis is to establish whether this 
kind of excitation could produce pipe stresses in excess of those cal-
culated under the usual assumption of full correlation of the ground 
motion. The importance of this question is best exemplified by the 
case of lateral response to fully correlated ground motion which 
approaches the pipe under zero angle of incidence, i.e. the wave front 
is parallel to the pipe axis. In such a case, no bending stresses 
occur. However, if the ground motion is not fully correlated, consi-
derable bending stresses can be generated as are shown below. 

This type of dynamic analysis is best formulated in terms of ran-
dom vibration. This approach makes it possible to account for the 
loss of correlation with both the distance (separation) and frequency. 
Such a loss of correlation is indicated by some experimental evidence 
(1,2,3,12) and can be anticipated with respect to the properties of 
other random phenomena such as natural wind or, in general, turbulent 
flow. 

Assume that the ground motion is homogeneous, i.e. statistically 
the same at all stations and described by the power spectrum of acce-
leration, Su  (f). The cross-spectrum of ground accelerations at two 

points of the pipe, yl  and y2  can then be written as 

5-u  (Y1'.Y2'0=5-(f)R(YY2'f)
(5) 

in which the normalized cross-spectrum 

-crf  
Vs  

R(y1 ,y2,f) = e (6) 

where r = ly2-yil = horizontal separation, f = frequency, Vs/f = wave 
length; c = a constant depending on the distance from the epicentre, 
intensity of the earthquake, pathway and other characteristics of the 
earthquake. 
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Theshapeofthepowerspectran,S
u 
 „and the magnitude of the 
g  

coefficient, c, can be established from experimental observations. The 
acceleration spectrum must be such that the corresponding displacement 
spectrum 

S..0  (w) 

S (w) = g  
u 4 
g w 

is finite for w 0. Suitable shapes were found using optimization 
subroutines. The three spectra used in the parametric study are shown 
in Figs. 7 and 8. 

Equation of Pipe Response and Its Solution  

When formulating the equations of pipe response in terms of ran-
dom vibration, a significant advantage can be taken of an observation 
derived from the parametric study of the lumped mass system. It was 
found that the effect of the off-diagonal soil stiffness and damping 
terms on the pipe response is quite small. Neglecting these off-
diagonal terms, the equation of the pipe lateral motion can be written 
for a distributed system as 

a
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ul u2 
S+iS)U(
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U(Y't)

x  aU(y,t)  
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4 at 

= G(Sui +iSudug(Y't) (8) 

in which p = mass of the pipe per unit length, E I = bending stiffness 
of the pipe, X = coefficient of pipe internal daffiping which can be 
neglected and U(y,t) = the absolute displacement of the pipe; the soil 
reactions are described by means of parameters S and Eq. 1. 

The advantage of this formulation is that a closed form solution 
of the random response can be obtained for some end conditions of the 
pipe. Because the stresses in the central part of a long pile are 
rather independent of the end conditions, guided ends are assumed; 
they yield very simple mode shapes, 

(.(y) = cos( . 2-) (9) a
j 
  

in which 

a. = (j-1)ff, j = 1,2,3... 

The first mode represents the rigid body motion. The undamped natural 
frequencies, w.,are given by Eqs. 10 and 11. 

(7) 
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With the mode shapes and natural frequencies established, it is 
also possible to calculate the damping ratios associated with indivi-
dual vibration modes. These modal damping ratios can be evaluated on 
the basis of an energy consideration outlined in Ref. 15. Integrating 
the work done by the damping forces Wj and relating this work to kine-
ticenergyE.,the modal damping ratios of buried pipes are 

D. = W./47E. 
J J J 

T 
u2  (f2)1/2 1 

214§u1
1Pb
j 

where Sul  and Su2 = constant soil stiffness 
and p = average mass density of the pipe. 

For the typical pipeline used in the previous section, the damping 
ratios turn out to be D1 = 125%, D2 = 119%, D3 = 110%...D15= 50%. The 
damping of buried pipelines is obviously very high. This is of conse-
quence for the further development of the random approach and also for 
other approximate solutions in which the modal damping ratios are only 
estimated. 

Using modal analysis and the mode shapes given by Eq. 9, the mean 
square response is 

N N  
U
2
(Y) = 

j
E
1 k

E ni(t)ik(t) j(Y)(1)k(Y)
(13) 

==1 

in which 11.(t)11,(t) = the covariance of generalized coordinates, ri(t), 
calculatecOfrom'a general relation (5) 

nj(t)nk(t) = ak(iw)aj(-iw)S
.0 
 (w)dw (14) 

uj k 

in which a(iw), a(-iw) = the admittance function and its complex con-
jugate, respectively. Their evaluation and substitution into Eq. 14 
yields, after integration and some other manipulations, 

(10) 

(12) 

and damping parameters, 
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in which the joint acceptance function is 

(This step is described in more detail in Hindy, Ref. 8). 

The joint acceptance function is a very important characteristic 
of the response and is shown in Fig. 9 in terms of the reduced dimen-
sionless frequency, n = cfL/V

s
, in which L = the length of the pipe. 

Substitution of Eq. 15 into Eq. 13 yields the mean square of the 
bending moment at station y 
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The expected peak value of the bending stress is 

? . g M2 I__.  

in which g = the peak factor (6). For the pipe used in the parametric 
study, g = 1.75 to 1.85. 

The outlined approach differs from that usually applied with 
structures in that the off-diagonal terms, njnk for j # k, are signi-
ficant and cannot be neglected in the analysis. This is so because the 
damping of fully embedded pipes is very high as has already been shown. 

An analogous approach can be formulated for the axial stresses of 
the pipes (9). 

nj(t)nk(t) = 

(15) 

- 0 . J,-1., 

(17)  

(18)  
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Examples of Numerical Results  

Examples of the numerical results established by means of the 
random approach are shown in Figs. 10 and 11. The stresses are almost 
constant along the pipe except near the boundaries where they depend 
on the end condition. While the total motion is only slightly larger 
than the rigid body displacement, the resultant stresses can be quite 
high. The level of these stresses is governed by the degree of the 
ground motion correlation which is described by the magnitude of the 
parameter, c, (Eq. 6). The effect of this parameter can be seen from 
Fig. 12. The analysis of the limited experimental data available 
indicates that c should be smaller than 1 with 0.1 to 0.3 being typical 
values. 

The spatial correlation can be expressed either by the coefficient, 
c, or by a physically more tangible measure, the correlation length, L. 
Integrating the correlation coefficient, the correlation length of 
ground displacement is found to be 

wr n 
13U 2 r w 
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_g_ L
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The correlation length of ground acceleration is similarly 
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In Eqs. 19 and 20, 
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u
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(21) 

and is the normalized ground acceleration spectrum. The relation bet-
ween the parameter, c, and the correlation length of the seismic 
ground motion is plotted in Fig. 13. 

SUMMARY AND CONCLUSIONS 

A theoretical study of seismic response of buried pipelines was 
conducted using two approaches: a lumped mass model excited by tra-
velling seismic waves and a distributed model exposed to partially 
correlated random ground motion. An extensive parametric study 
yielded a number of practical conclusions: 

Axial stresses in the pipe are much higher than bending stresses. 

In a homogeneous medium, soil-pipe interaction reduces the pipe 



187 

stresses compared to those calculated ignoring interaction. This re- 
duction is greater for axial stress than for bending stress but de-
creases with increasing stiffness of soil. 

When the pipe crosses a boundary between two media, higher 
stresses occur in the vicinity of the boundary and can exceed those 
predicted ignoring soil-pipe interaction. 

The effect of embedment depth and the off-diagonal terms in the 
stiffness and damping matrices describing the soil reactions are not 
very significant. 

When the ground motion is not fully correlated, pipe stresses can 
be considerably increased; high bending stresses can occur with zero 
angle of incidence in which case no bending stress results from a fully 
correlated ground motion. 

Further research into spatial correlation of seismic ground 
motions is desirable. 
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Figure 1 Lumped mass model of pipe. 
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Figure 2(a) Time History of Ground Velocity of San 
Fernando Valley Earthquake (1971) and 
Corresponding Axial Stresses in Pipe. 
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Figure 2(b) Time History of Ground Acceleration of San 
Fernando Valley Earthquake (1971) and 
Corresponding Bending Stresses in Pipe. 
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Figure 5 Maximum bending stresses in pipe due to S-wave propagating 
from soft soil to firm. 
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Figure 6 Maximum axial stresses in pipe due to P-wave propagating 
from firm soil to soft. 
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Figure 8 Spectra of Ground Displacement. 
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Figure 10 An Example of Pipe Lateral Response. 
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Figure 11 An Example of Pipe Axial Response. 



PARAMETER C 

Figure 12 Variation of Pipe Response and Stresses With Parameter C. 




